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Abstract-A comprehensive set of finite-difference solutions describing the heat or mass transfer-controlled 
dissolution of isolated spheres is presented. The analysis is based on a generalized formulation which 
includes three specific classes of dissolution problems. A coordinate transformation which immobilizes the 
moving boundary and maps the intinite region of interest into a finite region is used to minimize the difft- 
culties associated with a numerical analysis of this problem. Radius-time and particle lifetime results are 
reported for ranges of parameters which include the majority of physically important dissolution processes. 
In addition, the results of this investigation are used to determine the. accuracy and range of applicability 

of various approximate analytical solutions. 

NOMENCLATURE 

specific heat capacity at constant 
specific volume for outer phase; 
binary diffusion coefficient for outer 
phase ; 

equilibrium mass density of component 
I at particle surface ; 
initial mass density of component I in 
outer phase ; 

specific enthalpy of phase change; 
integral defined by equation (14); 
thermal Conductivity of outer phase ; 
radius of bubble ; 

PIE1 

Pro, 

density of outer phase ; 
density of particle ; 
correlating variable for particle life- 

times = 2NatL ln t1 + Nbl. 
initial radius of bubble ; 
radial position variable ; 
temperature; 

Nb ’ 
independent variable defined by equa- 
tion (7). 

equilibrium temperature at particle 
surface ; 
initial temperature in outer phase; 
time ; INTRODUCTION 

dimensionless lifetime of particle; THE DISSOLUTION of a spherical particle con- 
partial specific volume of component I ; trolled by the molecular diffusion of mass or 
quantity defined by equation (18). conduction of heat is of considerable importance 

The various definitions of N, N, R, r, t and Y in a large number of technical problems. The 
are given in Table 1. lifetime of dissolving bubbles, droplets, and 

Greek letters 
solid particles in an isothermal bulk phase is a 
prime consideration in the design of many types 

6 thermal diffusivity of outer phase = 

k/p& ; 

of processing equipment. Also, the mathematical 

PV constant used in equation (7) ; 
analysis of this type of phenomenon is frequently 

Pf? mass density of component I ; 
applied in the interpretation of experiments 
designed to measure fundamental transport 

395 
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properties. Furthermore, the evaporation, con- 
densation, sublimation, or melting of a spherical 
phase immersed in a second phase of the same 
component constitutes an important class of 
problems in the domain of heat transfer. In 
the commonly considered analysis of these 
related phenomena, the dissolving or shrinking 
of an isolated stationary spherical phase is 
regarded as being controlled by diffusion or 
conduction in an outer phase of infinite extent 
This is a nonlinear transport problem which 
involves the solution of the unsteady-state 
diffusion equation in the presence of a moving 
boundary. 

Although an exact analytical solution based 
on a similarity transformation is available for 
the related process of growth from a zero initial 
radius [l-3], no such result has been derived 
for the case of spherical particle dissolution. 
Indeed, examination of the equations describing 
particle dissolution reveals that no similarity 
variable exists because the boundary conditions 
are not compatible with any one-parameter 
groups of transformations which render the 
differential equations conformally invariant since 
the initial particle radius is nonzero. Conse- 
quently, investigation of the nonlinear particle 
dissolution problem has, of necessity, proceeded 
by utilization of asymptotic analytical solutions 
[4-83, by application of weighted residual 
techniques to generate approximate analytical 
solutions [9], and by employment of finite- 
difference methods [7, 10, 111. 

Although asymptotic and weighted residual 
solutions can be compact and easy to apply, 
their accuracy and useful range of validity are 
rarely available since error estimates for such 
solutions are usually difficult to obtain. Hence, 
it is clear that accurate finite-difference solutions 
can serve a twofold purpose. Not only do such 
solutions provide a quantitative description 
of an important physical situation, but, in 
addition, they serve as a basis for assessing the 
general applicability of the more desirable 
approximate analytical solutions. Accurate and 
comprehensive finite-difference solutions of the 

particle dissolution problem appear to be 
lacking. The results of Cable and Evans [lo] 
have recently been shown [7] to be inaccurate 
and those of Readey and Cooper [l l] are 
inaccurate and limited. The calculations of a 
third study [7] are also quite limited since the 
principal goal of that investigation was to 
present an improved asymptotic solution for the 
dissolution process. 

In this paper, a relatively comprehensive 
set of finite-difference solutions describing the 
heat or mass transfer-controlled dissolution of 
spherical particles is presented. The ranges of 
conditions covered in this parametric study 
were determined by a survey of the characteristics 
of the various physical phenomena which can 
be classified as dissolution processes. Radius-- 
time and particle lifetime results are reported, and 
the various approximate analytical solutions are 
examined in light of the present investigation. 

FORMULATION OF EQUATlONS 

In this section, we list the assumptions 
utilized in the derivation of the basic transport 
equations and present a single set of equations 
which, by proper definition of the variables, 
describes both heat and mass transfer-controlled 
particle dissolution It proves convenient to 
divide the general class of spherical particle 
dissolution problems into three subclasses. 
Particle dissolution which is controlled by 
diffusion in an infinite binary bulk phase whose 
components have constant partial specific 
volumes is considered a Class I-A problem. 
Class I-B contains the diffusion-controlled dis- 
solution problems with a constant density 
condition imposed on the outer binary phase. 
Finally, Class II consists of the problems for 
which one-component particle dissolution is 
controlled by heat conduction in the infinite 
bulk phase. 

The following assumptions are utilized in the 
derivation of the transport equations for all 
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three classes : 

(1) The velocity field in the outer phase is 
purely radial. 

(2) The concentration or temperature field is 
spherically symmetric. 

(3) The origin of the coordinate system is the 
particle centre which is at rest. 

(4) All gravitational effects are neglected. 
(5) The particle is a perfect sphere isolated in 

an inlinite bulk phase. 
(6) Inertial, viscous, and surface effects are 

small so that the equations of motion for the 
system predict that the pressure is effectively 
uniform throughout the system for all times. 

(7) The initial concentration or temperature 
profile in the outer phase is uniform. 

(8) There exists concentration or temperature 
equilibrium at the phase boundary. 

(9) The density of the spherical particle is 
constant. 

(10) Heat conduction and diffusion in the 
outer phase are adequately described by linear 
constitutive equations. 

For Class I-A problems, the following addi- 
tional assumptions must be introduced : 

(11) The dissolution process proceeds iso- 
thermally. The effect of heat released or absorbed 
during phase change is considered negligible. 

(12) The spherical particle is effectively a 
one-component phase. 

(13) There is no chemical reaction in the 
infinite bulk phase. 

(14) The binary mutual diffusion coeficient 
in the outer phase is constant. 

(15) The partial specific volumes of the two 
components in the outer phase are constant. 

For Class I-B problems, assumptions (ll)-- 
(14) must be utilized and assumption (15) .is 
replaced by the following statement : 

(16) The density of the outer phase is constant ; 
this means that the partial specific volumes of 
the two components are not only constant but 
equal to each other. 

The appropriate additional assumptions for 
Class II problems am as ,follows : 

(17) The density of the outer phase is constant. 
(18) The sensible heat of the particle phase 

relative to the interfacial temperature is small 
compared to the enthalpy of phase change. 

(19) The thermal conductivity and the specific 
heat capacity of the infinite bulk phase are 
constant. 

(20) Viscous dissipation in the system is 
negligible. 

(21) The specific internal energy of the com- 
ponent of interest is a function only of the specific 
entropy and the density. Consequently, only 
the simplest caloric equation of state is considered 
in this study. 

From the above assumptions and the phase 
rule, it is clear that the interfacial concentration 
for Class I-A and Class I-B problems and the 
interfacial temperature for Class II problems 
are constants set by external conditions Hence, 
application of the appropriate conservation 
laws and jump conditions at the phase boundary 
in conjunction with the above assumptions yields 
the following dimensionless set of equations 
for heat or mass transfer-controlled particle 
dissolution [7) : 

a2Y 2f3Y 
=gf;ar 

Y(r, 0) = 0 r>l 

Y(a), t) = 0 tzo 

Y(R, t) = 1 t>o 

R(0) = 1. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The definitions of the variables and parameters 
for these equations are given for all three classes 
of dissolution problems in Table 1. The re- 
mainder of this paper is concerned with solution 
of this set of equations, both by finite-difference 
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Tuble 1. Definitions ojvariables and parameters 
-- .._.. -.-. -- - 

Variable or 
parameter Class 1-A Class I-B Class 11 

t P? - Pro PT - Pro T* -- ‘To -.-_- ~~..__ -~. ..-. 
PIE - PI0 PIE - PI0 TE - To 

Dt* Dt* at* 
t 

iF 0 R;; R; 

r* r* r* 
r -- 

& Rn RO 
__._ ______ ___..-----..~_ .----. .-_ ~~ --._ 

R 
R’ R* R* 

RO RO RO 
____ 

N, 

PIE - PI0 PIE - PI0 cr, - ye, 
tt!p,, - PfE P - PIE AXI 

methods and by approximate analytical tech- 
niques. 

FIN~E-DI~R~NCE METHOD AND RESULTS 

Equations (l,)--(6) present two compli~tions 
which must be considered in any finite-difference 
solution of the dissolution process, the move- 
ment of the boundary between the two phases 
and the infinite extent of the bulk phase. Associ- 
ated with this second compli~tion is the fact that 
the gradients of concentration or temperature 
become very large near the moving boundary 
and, for an accurate finite-difference repre- 
sentation of the differential equations, closely 
spaced grid points are required in this region. 
On the other hand, a coarse grid is adequate 
for the major portion of the bulk phase. It has 
been suggested [7] that the inaccuracies of 
previous numerical studies of this problem 
[ 10, ll] are due to inadequate finite-difference 
approximations for the concentration or tem- 
perature gradients near the surface of the 
spherical particle. This previous investigation 
demonstrated that accurate numerical solutions 

can be obtained if a coordinate transformation is 
used to immobilize the moving boundary and 
map the infinite region into a region of finite 
extent. One appropriate transformation for the 
dissolution problem is 

+=l-exp[-fl(r-R)] (7) 

and introduction of this new independent 
variable converts equations (1)15) to the follow- 
ing forms : 

1 Y+ 
B(1 - $) at ‘- 

Y($,Ol = 0 

YU, t) = 0 

Y(0, t) = 1 

In terms of the new variable, $, the transport 
which controls the dissolution process occurs 
in a fixed finite region. The parameter p is 
a constant which permits some flexibility in 
the coordinate transformation and is used in 
distributing grid points for the most accurate 
representation of the differential equations. If 
a centrat difference form for derivatives with 
respect to $ and a backward form for derivatives 
with respect to time are employed, equations 
(8) and (9) and the associated boundary condi- 
tions can be solved by an implicit finite-difference 
scheme which utilizes a Gaussian elimination 
method to solve a tridiagon~ matrix system. The 
implicit finite-difference technique for the solu- 
tion of parabolic partial differential equations 
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which is used in this analysis is well known [12] 
and the details are not included in this paper. 

The mesh sixes for the radial and time variables 
were varied in order to establish the convergence 
of the finite-difference solution to the solution 
of the differential equations. To obtain accurate 

Table 2 Calculated dissolving particle 
lifetimes 

N, tL 5 

lo-* 
lo-’ 
lo-6 
lo-s 
lo+ 
lo-3 
10-Z 

10-e 
lo-s 
lo-4 
lo-J 
lo-* 
lo- ’ 
1 

1o-5 
lo+ 
lo-3 
lo-* 
10-l 
1 

10’ 

lO-4 
lO-3 
lo-* 
10-l 
1 

10’ 
IO2 

10-a 
lo-* 
10-l 

1 
IO’ 
102 
IO’ 

N, = lO-5 
500 x IO’ 
5.00 x lo6 
500 x 105 
499 x IO4 
495 x lo3 
484 x 102 
451 x 10’ 

NI, = 10-j 
500 x IO5 
499 x IO4 
495 x IO3 
484 x IO* 
452 x IO’ 
400 
284 x IO-’ 

Nb = IO-* 
5.01 x 104 
491 x IO3 
486 x IO* 
465 x 10’ 
402 
2.85 x IO-’ 
1.61 x lO-2 

N, = 10-l 
5.21 x IO3 
5.11 x IO2 
486 x IO’ 
422 
3.02 x IO-’ 
I.71 x 10-2 
8.76 x lO-4 

N, = 1 
690 x IO* 
675 x IO’ 
601 
451-x 10-I 
271 x 10-Z 
I.43 x 10-J 
7.26 x lO-5 

a990 
0968 

IQ0 
0998 
0990 
0968 
0936 
0800 
@568 

0997 
0989 
0961 
0925 
0800 
0567 
@320 

0993 
0974 
0926 
0804 
0576 
0326 
0167 

0.956 
0936 
0833 
0625 
@376 
@I98 
@IO1 

solutions with a reasonable number of time 
steps, it was found expedient to start with very 
small time steps and increase the size of these 
steps as the particle dissolution process pro- 
ceeds In many cases, particularly at small 
values of N,, the rate of dissolution increases 
near the end of the process and it was necessary 
to decrease the size of the time steps in this 
region. The absolute size of the time steps 
was dictated by the parameters N,, and Nb and, 
for most case% approximately 600 steps in time 
were necessary for an accurate description of 
the complete dissolution process. In the $ 
direction, 160 evenly spaced points were found 
to be adequate. For the optimum use of these 
grid points, the range of fl was varied from 
03 for slowly dissolving particles to a value 
of 20 for the cases where the rate of movement 
of the free surface is fast compared to the 
growth of the boundary layer. 

The range of conditions covered in this study 
and the calculated dimensionless particle life- 
times are presented in Table 2 The quantity z 
is a convenient correlating variable for life- 
times suggested by one of the analytical solutions 
described below. The majority of dissolution 
problems which are of practical importance fall 
within the range of conditions considered in 
this study. A graphical representation of the 
lifetime results is presented in Fig 1. Maximum 
computer time on a Burroughs B5500 computer 
was 500 s. In many applications, the radius of 
the particle as a function of time is of interest 
as well as the particle lifetime, and Figs. 2-6 
show the rates of dissolution for the cases 
considered in this study. Each of these figures 
corresponds to a specific value of N, and it is 
evident that, as N, is increased, a larger fraction 
of the dissolution process occurs during a given 
fraction of the lifetime of the sphere. 

A comparison of the finite-difference solu- 
tions of this study and results calculated from 
an asymptotic perturbation solution discussed 
below is presented in Fig 7. This graph shows 
that the particle lifetimes calculated from the 
perturbation solution differ by 2 per cent or 
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F~ti. 1. Parametric correlation of particle lifetimes. 

I I I I I I I I I \ 
0.1 0.2 0.3 04 05 0.6 0.7 0.6 O-9 I.0 

t/c 

FIG. 2. Radius-time curves for N, = 10m5 
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FIG. 3. Radius-time curves for N, = lo- 3. 

04- 

0.2 - 

FIG. 4. Radius-time curves for N, = lo-’ 
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0 0.2 0.3 04 0.5 06 0.7 0.0 09 I.0 

FIG. 5. Radius-time curves for N, = lo- ’ 

0.3 0.4 0.5 06 0.8 a9 I.0 

t/c 

FIG. 6. Radius-time curves for N, = 1. 
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less from those calculated from the linite- completely described by the dissolution model 
difference solution when N, 4 001 and N, 4 utilized here. 
001. Good agreement is also found for the 
radius-time curves. Thus, for cases where I?, ANALYTICAL ~L~ONS 

and ZVb are less than 001, the results presented As indicated above, analytical solutions to the 
above were obtained from the perturbation particle dissolution problem have been obtained 
solution. either by using asymptotic methods or by 

FIG. 7. Comparison of lifetimes calculated from finite- 
difference and perturbation solutions for N, = @Ok 

The radius-time curves and particle lifetime 
calculations presented here should provide 
accurate descriptions of the numerous physical 
situations which are adequately described by 
the basic set of equations presented above. In 
other important cases, some of the assumptions 
utilized above in deriving the dissolution equa- 
tions are not valid (For example, the physical 
properties may be concentration or temperature 
dependent.), and the solutions of this paper can 
be regarded only as approximations to the true 
behavior. However, in many of these cases, 
the dominant mechanism of the dissolution 
process is described by the present ~lcuIations, 
and the results should be valuable for approxi- 
mating physical phenomena which are not 

applying weighted residual techniques. Asymp- 
totic method yield solutions which are ap- 
proximately valid when a parameter or variable 
of the problem is either very small or very 
large. Perturbation procedures are a typical 
and commonly used class of asymptotic methods. 
Such solutions, of course, by themselves des- 
cribe only a part of the physi~lly imprint 
range of dissolu tion processes, Weigh ted residual 
methods lead to approximate solutions which 
are obtained by demanding that the difference 
between these solutions and the exact solutions 
be minimized in some sense. Usually, weighted 
integrals of the residual are made to vanish, 
and the simpler weighted residual schemes are 
sometimes called integral methods [13]. These 
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methods have been applied with success in 
obtaining accurate solutions to a variety of 
nonlinear conduction and diffusion problems 
[13], and a well fo~ulat~ weighted residual 
solution can often provide accurate results for 
wide ranges of the variables and parameters of 
the problem. Preliminary work [9] has indicated 
the possibility that the integral method can 
satisfactorily describe the particle dissolution 
process. To our knowledge, however, no pub- 
lished comprehensive weighted residual results 
are available at the present time. 

extend the accuracy and range of validity 
provided by the zero-order or quasi-stationary 
solution and, in addition, furnish valuable 
insight about the structure of the solution. 
Furthermore, the zero-order perturbation 
solution, although computationally equivalent 
to available quasi-stationary results, is much 
simpler in form apparently because incomplete 
higher-order terms have not been disregarded 
in previous investigations. 

The radius-time relationship derived from 
the perturbation solution can be expressed as 

Basically, two types of asymptotic analytical 
solutions have been derived for description of 
particle dissolution phenomena quasi-s~t~onary 
solutions and quasi-steady-state solutions. The 
so-called quasi-stationary solutions have been 
obtained by neglecting the convective transport 
term of the unsteady-state diffusion or energy 
equation and then solving this equation with 
the particle surface considered stationary. The 
motion of the surface of the particle can then 
be determined by utilizing the heat or mass 
flux at the phase boundary as determined from 
the solution of the simplified transport equation. 
The quasi-stationa~ solution is apparently 
applicable to situation where conve~ti~ trans- 
port is small compared to diffusive flow and 
where the rate of growth of the thickness of 
the concentration or temperature boundary 
layer surrounding a particle is fast compared 
to the rate of movement of the phase boundary. 
The quasi-stations solution can thus be 
regarded as the asymptotic result for small 
N, and N, 

+ 2t + $ - 21,(t) 
1 

+ N$l,[t -t- ti,(t,] (13) 

where there is no N% term and where 

l*(t) = 
’ r” erfc [q/2(t - A)+] ss 
00 

(1 + 1)* J(n4 

X 
C 

exp ( - r,~*j4J) + erfc (r]/2JA) 

JM (1 + Y/j I 
drf dl. (14) 

Epstein and Plesset [S] and Krieger et al. [6] 
both obtained quasi-stationary solutions essen- 
tially by the method described above. A more 
satisfactory approach is presented In a recent 
investigation 17-j where a parameter perturba- 
tion solution of the dissolution process is 
derived by taking advantage of the smallness 
of N, and N, The quasi-stationary solution is 
thus embedded as a first step in an orderly 
scheme of successive approximations The first- 
order terms derived in the perturbation analysis 

Details of the perturbation solution, an expres- 
sion for the concentration or temperature 
distribution around a particle, and graphs 
depicting the functional dependence of 1 ,(t) 
are given elsewhere [7]. The zero-order per- 
turbation result, which can be regarded as a 
modification of previous quasi-stationary solu- 
tions, is simply 

R2= 1-2N, t+2 5 
! J> 

(151 

It should be noted that, for given values of the 
two perturbation parameters, more terms will 
be needed to determine the particle radius with 
equivalent accuracy from the series solution at 
the longer values of time since a slower con- 
vergence rate can be expected towards the end 
of the interval of convergence, which can be 
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inferred to be 0 < R < 2 Hence, it is possible 
that the truncated perturbation series expan- 
sion for the radius, equation (13), will lead to 
significant errors near the end of the dissolution 
process even though the remainder of the 
radius-time curve is predicted quite accurately. 

It was shown above that the perturbation 
solution predicts the particle lifetime with less 
than 2 per cent error for N. and N, both equal 
to or less than 001, and accurate radius-time 
curves can also be calculated from the analytical 
solution for this range of perturbation para- 
meters. Furthermore, from previous results [7], 
it follows that the major part of the radius-time 
curve can be calculated very accurately for 
values of N. and N, of 02. Therefore, the 
asymptotic analytical solution will yield reason- 
ably accurate results for values of the perturba- 
tion parameters significantly greater than 0.01, 
although its use for larger values of N,, and Nb 
cannot be recommended without some reserva- 
tion. 

a steady-state solution at inftite time, a 
perturbation approach of this type may well be 
susceptible to the problems inherent to forming 
an asymptotic expansion which runs opposite 
to the natural direction of time [15]. Hence, 
we shall here merely present the basic form of 
the quasi-steady-state solution and consider 
the possible range of validity by comparing 
it with the fmitedifference results. 

The extended quasi-steady-state 
the solution of 

result is 

d2Y 2dY R2Nb i?Y dY 
p+;s+r2 - -= 

0 ar r=R dr 
0 (16) 

subject to equations (3) and (4) 
(aY@r),=, regarded as constants. 
can be expressed as 

with R2 and 
The solution 

with 

Y= 
1 _ ewl’ 

1 _ eW/R (17) 

The quasi-steady-state solution to the dis- 
solution problem is discussed by Bankoff [4] 
and by Kirkaldy [2], and the more general 
so-called extended quasi-steady-state solution 
is utilized by Rosner [14] and by Spalding [S]. 
These solutions appear to describe spherical 
dissolution phenomena under conditions where 
the interface velocity is small so that the tem- 
perature or concentration field eventually 
reaches what is effectively a steady-state dis- 
tribution. Thus, a quasi-steady-state result can 
be regarded as the asymptotic solution for small 
N, and large t. Unfortunately, them appears to 
be no detailed investigation available of the 
asymptotic nature of the quasi-steady-state 
solution, which basically should be derivable 
from a perturbation analysis similar to the one 
utilized to elucidate the basic structure of the 
quasi-stationary result. Indeed, a perturbation 
solution might be implemented by combining 
a parameter perturbation technique of the type 
utilized above with an inverse coordinate 
perturbation scheme. However, since the system 
would presumably have to be perturbed around 

(18) 

Thus, from equations (S), (6), (17) and (18), it 
follows that 

R2 = 1 _ XtW + N,) 
Nb 

(19) 

and the particle lifetime can be expressed as 

Nb 
tL = 2N, In (1 + Nb)’ 

A less general but more widely used quasi- 
steady-state solution is the result which is valid 
for small values of Nb as well as small values of 
N, and large values of t. The equations cor- 
responding to equations (19) and (20) for this 
case are simply 

R2 = 1 - 2N,t (21) 

1 
f"=2N,. (22) 



406 J. L. DUDA and J. S. VRENTAS 

In Table 3, the first-order perturbation solu- 
tion, the zero-order or quasi-stationary solution, 
and the extended quasi-steady-state solution 
are compared with the finite-difference calcula- 
tion for N, = N, = 0.01. As would be expected, 

Table 3. Ecaluotion ofanalytical solutionsfor N, = N,, = 0.01 

R2 

t 
Finite- Equation Equation Equation 

difference (13) (15) t 19) 
-______ 

O-l 0.9910 09909 0.9909 0.9980 
1.0 0.9581 0.9580 0.9574 0.9801 
5.0 0.8531 08530 0.8495 0.9005 

10.0 0.7370 0.7368 0.7286 0.8010 
15.0 O-6269 0.6264 0.6126 0,7015 
20.0 0.5203 05192 0.499 1 0.6020 
25.0 0.4164 0 4142 0.3872 0,5025 
30.0 0.3149 03109 0.2764 04030 
35.0 0.2156 02090 01665 0.3035 
40.0 0.1188 01082 0.0573 0.2040 
45.0 0.0257 oGO85 -0.0514 0.1045 

-__ 

the two-term perturbation result is clearly 
superior. The quasi-stationary solution becomes 
significantly inaccurate near the end of the 
dissolution process and the extended 
quasi-steady-state result systematically and sub- 
stantially underestimates the rate of particle 
dissolution. A similar conclusion about the 
extended quasi-steady-state solution can be 
drawn from Table 4 where it is compared to a 
finite-difference solution for N, = 0.01 and 
N, = 1. Hence, results calculated from equation 
(19) are significantly in error even for values of 
N, as low as @Ol. The possible ranges of N, and 
N, where equation (19) might be expected to 
yield good results can be obtained from Fig. 1. 
The extended quasi-steady-state result predicts 
t = 1; from Fig 1 it is possible to determine, 
for each Nb, how accurately this solution 
predicts the particle lifetime for various values 
of N,. 

Since the form of the perturbation solution 
is relatively simple, there appears to be no 
compelling reason to utilize the more approxi- 
mate quasi-steady-state result for cases when 
both N, and N, are small. The extended solution 

given by equation (19) does yield results for all 
values of N 1, and small N,, a region not covered 
by the perturbation solution. However, such 
calculations should be treated with some caution 
since the asymptotic nature of the quasi-steady- 
state result is not clearly understood. 

Tuble 4. Comparison of finite-difirence 
and extended quasi-steady-state solutions 

for N, = 0.01 and N,, = 1 

R2 
t 

Finite-difference Equation (19) 

01 0.9941 09986 
10 0.9718 0.9861 
5,o 08988 0.9307 

to.0 08173 08614 
15,o 0.7395 O-7921 
20.0 0.6637 O-7227 
25.0 0.5895 06534 
30.0 0.5164 0.5841 
35.0 o-4444 0.5148 
40-O 0.3731 0.4455 
45.0 0.3028 0.3762 
500 0.2332 0.3069 
60.0 00967 0.1682 
65 0 0.0305 O-0989 
67.5 0 0.0643 

A third asymptotic solution utilized with 
success in the treatment of bubble growth 
phenomena [16] is the thin boundary-layer 
solution. This solution applies to physical 
situations where the velocity of the particle 
surface is large compared to the rate of growth 
of the thickness of the concentration or tem- 
perature boundary layer ; it can thus be regarded 
as the asymptotic perturbation result for large 
N, Although thin boundary-layer solutions 
have proved very valuable in the analysis of 
spherical growth phenomena, it is clear that 
such results would be of limited utility in the 
analysis of dissolution processes. 

1. 

2. 
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DISSOLUTION CONTRaLEE PAR UN TRANSFERT DE MASSE ET DE CHALEUR POUR 
UNE SPHERE ISOLEE 

R&n&-On presente un ensemble de solutions aux differences tinies decrivant la dissolution contralee 
par le transfert de chaleur et de masse d’bne sphere isol& L’analyse est basee sur une formulation genCralis6e 
qui inclut trois classes spQifiques de problemme de dissolution. Une transformation qui immobilise la 
frontibre mouvante et transforme la r6gion infmie inttressante en region fmie est utilis&. alin de minimiser 
les ditIIcultb associ&es a une analyse numtrique de ce problemme. 

Les resultats relatifs a la variation du rayon en fonction du temps et au temps de vie de la particule sont 
etablis pour un ensemble de parametres qui inclut la majorit des processus de dissolution physiquement 
importants. De plus, les resultats de cette recherche sont utilids pour determiner la precision et le domaine 

d’application des diverses solutions analytiques approchbs. 

WARME- UND STOFFUBERGANGSABHANGIGE AlJFL&UNG EINER EINZELNEN 
KUGEL 

Zusommenfasnug-Es wird ein umfassender Satz von Liisungen endlicher Differenzengleichungen 
angegeben, der das durch W&rme- oder Stolhibertragung bestimmte Schmelzen einer einzelnen Kugel 
beschreibt Die Analym beruht auf einer verallgemeinerten Liisung die 3 besondem Arten von Schmelz- 
problemen einschliesst Eine Koordinatentransformation, welche die frei beweglichen Grenzen festlegt 
und den interessierenden, unendlichen Bereich in einen endlichen abbildet, wird angewandt, um die 
Schwierigkeiten maglichst gering zu halten, die mit der numerischen Liisung des Problems zusammen- 
hangen. Ftir Parameterbereiche, Welch die meisten physikaliscb bedeutsamen Schmelzprozesse einschliessen, 
werden als Ergebnisse die Abhtigigkeit der Radien von der Zeit und die Lebensdauer der Kugeln angegeben. 
Zus8tzlich werden die Ergebnisse dieser Untersuchung dazu benutzf die Genauigkeit und den Anwen- 

dungsbereich verschiedener analytischer NaherungslBsungen zu bestimmen. 

PACTBOPEHBE H3OJIHPOBAHHOFi C@EPbI IIPH YIIPABJIHEMOM 
TEIIJIOBJIH MACCOIIEPEHOCE 

AHEOT8qHa-GnnCbrBaoTCH B gOCTynHOM BHAe pFlA pemeHHn B uOne4HbIx pa3nocTnx 
ypanHeHHfi AJrH cJry4aH paCTBOpeHnn H30JlHpOBaHHblX C+ep llpkl yIIpaBJlHeMOM Tenno- 

mzi MacconepeKoce. fiai+Tm ananua Ha 0cHoBe y+Ta Tpex THHOB sagas no pacTBopeKxm. 

B~en~lxynpo~eH~~3a~as~~~0~~~c~npeo6pa30BaH~eKOOp~~1HaT,BKOTOpb1X1lrHOp~lpyeTC~ 

RBIUfSeHUe rpaHUL&I, n 6eCKOHeYHaR 06naCTb oTo6pamaeTcii B KOHeqHym. ,&IJS 06nacTet 

BapaMeTpOB,KOTOpbIe XapaKTepH3yIOT6OJIbIlIliHCTBO @3llYeCKII Ba)KHblXIIpOqecCOB pacTBo- 

peHHR, npliBoARTcR 3HaYeHHR XapaKTepHCTHYeCKOl'O BpeMeHn EI BpeMeHn HUf3HII sacTq. 

HpOMe TOrO, pe3yJIbTaTn 3TOrO IlCCJIeJJOBaHMs UCIIOnb3yIoTCFI Anff onpeJ(eneHm TOYBOCTK H 

FpaHRlJ npllMeHnMOCTH pa3JrnYHbtX npn6nn=eHnbrx aHanHTnYecHnx pemeHnP. 


