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Abstract— A comprehensive set of finite-difference solutions describing the heat or mass transfer-controlled
dissolution of isolated spheres is presented. The analysis is based on a generalized formulation which
includes three specific classes of dissolution problems. A coordinate transformation which immohilizes the
moving boundary and maps the infinite region of interest into a finite region is used to minimize the diffi-
culties associated with a numerical analysis of this problem. Radius-time and particle lifetime results are
reported for ranges of parameters which include the majority of physically important dissolution processes.
In addition, the results of this investigation are used to determine the accuracy and range of applicability
of various approximate analytical solutions.

NOMENCLATURE qeq e .
) ) P, equilibrium mass density of component
C,, specific heat capacity at constant 1 at particle surface;
specific volume for outer phase; Pro. initial mass density of component I in
D, binary diffusion coefficient for outer outer phase;
phase; ; .
AR, specific enthalpy of phase change; :;,’ g:z::tt;, g: ;:rttteircil;ase ’
I),  integral defined by equation (14); T, correlating variable for particle life-
k, thermal onductivity of outer phase;
R*,  radius of bubble; times = Nty In(1 + N");
R,, initial radius of bubble; N,
r*,  radial position variable; ¥, independent variable defined by equa-
T*, temperature; tion (7).
Tz,  equilibrium temperature at particle
surface;
Tp,  initial temperature in outer phase;
t*.  time; INTRODUCTION
t, dimensionless lifetime of particle; THE DISSOLUTION of a spherical particle con-
P, partial specific volume of component I; trolled by the molecular diffusion of mass or
W,  quantity defined by equation (18). conduction of heat is of considerable importance
The various definitions of N, N, R, r,tand Y in a large number of technical problems. The
are given in Table 1. lifetime of dissolving bubbles, droplets, and
solid particles in an isothermal bulk phase is a
Greek letters prime consideration in the design of many types
o, thermal diffusivity of outer phase = of processing equipment. Also, the mathematical
k/pC;; analysis of this type of phenomenon is frequently
B, constant used in equation (7); applied in the interpretation of experiments
pf,  mass density of component I; designed to measure fundamental transport

395



396

properties. Furthermore, the evaporation, con-
densation, sublimation, or melting of a spherical
phase immersed in a second phase of the same
component constitutes an important class of
problems in the domain of heat transfer. In
the commonly considered analysis of these
related phenomena, the dissolving or shrinking
of an isolated stationary spherical phase is
regarded as being controlled by diffusion or
conduction in an outer phase of infinite extent
This is a nonlinear transport problem which
involves the solution of the unsteady-state
diffusion equation in the presence of a moving
boundary.

Although an exact analytical solution based
on a similarity transformation is available for
the related process of growth from a zero initial
radius [1-3], no such result has been derived
for the case of spherical particle dissolution.
Indeed, examination of the equations describing
particle dissolution reveals that no similarity
variable exists because the boundary conditions
are not compatible with any one-parameter
groups of transformations which render the
differential equations conformally invariant since
the initial particle radius is nonzero. Conse-
quently, investigation of the nonlinear particle
dissolution problem has, of necessity, proceeded
by utilization of asymptotic analytical solutions
[4-8], by application of weighted residual
techniques to generate approximate analytical
solutions [9], and by employment of finite-
difference methods [7, 10, 11].

Although asymptotic and weighted residual
solutions can be compact and easy to apply,
their accuracy and useful range of validity are
rarely available since error estimates for such
solutions are usually difficult to obtain. Hence,
it is clear that accurate finite-difference solutions
can serve a twofold purpose. Not only do such
solutions provide a quantitative description
of an important physical situation, but, in
addition, they serve as a basis for assessing the
general applicability of the more desirable
approximate analytical solutions. Accurate and
comprehensive finite-difference solutions of the
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particle dissolution problem appear to be
lacking. The results of Cable and Evans [10]
have recently been shown [7] to be inaccurate
and those of Readey and Cooper [11] are
inaccurate and limited. The calculations of a
third study [7] are also quite limited since the
principal goal of that investigation was to
present an improved asymptotic solution for the
dissolution process.

In this paper, a relatively comprehensive
set of finite-difference solutions describing the
heat or mass transfer-controlled dissolution of
spherical particles is presented. The ranges of
conditions covered in this parametric study
were determined by a survey of the characteristics
of the various physical phenomena which can
be classified as dissolution processes. Radius—
time and particle lifetime results are reported, and
the various approximate analytical solutions are
examined in light of the present investigation.

FORMULATION OF EQUATIONS

In this section, we list the assumptions
utilized in the derivation of the basic transport
equations and present a single set of equations
which, by proper definition of the variables,
describes both heat and mass transfer-controlled
particle dissolution. It proves convenient to
divide the general class of spherical particle
dissolution problems into three subclasses.
Particle dissolution which is controlled by
diffusion in an infinite binary bulk phase whose
components have constant partial specific
volumes is considered a Class 1-A problem.
Class I-B contains the diffusion-controlled dis-
solution problems with a constant density
condition imposed on the outer binary phase.
Finally, Class II consists of the problems for
which one-component particle dissolution is
controlled by heat conduction in the infinite
bulk phase.

The following assumptions are utilized in the
derivation of the transport equations for all
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three classes:

(1) The velocity field in the outer phase is
purely radial.

(2) The concentration or temperature field is
spherically symmetric.

(3) The origin of the coordinate system is the
particle centre which is at rest.

(4) All gravitational effects are neglected.

(5) The particle is a perfect sphere isolated in
an infinite bulk phase.

(6) Inertial, viscous, and surface effects are
small so that the equations of motion for the
system predict that the pressure is effectively
uniform throughout the system for all times.

(7) The initial concentration or temperature
profile in the outer phase is uniform.

(8) There exists concentration or temperature
equilibrium at the phase boundary.

(9) The density of the spherical particle is
constant.

(10) Heat conduction and diffusion in the
outer phase are adequately described by linear
constitutive equations.

For Class I-A problems, the following addi-
tional assumptions must be introduced :

(11) The dissolution process proceeds iso-
thermally. The effect of heat released or absorbed
during phase change is considered negligible.

(12) The spherical particle is effectively a
one-component phase.

(13) There is no chemical reaction in the
infinite bulk phase.

(14) The binary mutual diffusion coefficient
in the outer phase is constant.

(15) The partial specific volumes of the two
components in the outer phase are constant.

For Class I-B problems, assumptions (11)-
(14) must be utilized and assumption (15) is
replaced by the following statement :

(16) The density of the outer phase is constant ;
this means that the partial specific volumes of
the two components are not only constant but
equal to each other.

The appropriate additional assumptions for
Class II problems are as follows:
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(17) The density of the outer phase is constant.

(18) The sensible heat of the particle phase
relative to the interfacial temperature is small
compared to the enthalpy of phase change.

(19) The thermal conductivity and the specific
heat capacity of the infinite bulk phase are
constant.

(20) Viscous dissipation in the system is
negligible.

(21) The specific internal energy of the com-
ponent of interest is a function only of the specific
entropy and the density. Consequently, only
the simplest caloric equation of state is considered
in this study.

From the above assumptions and the phase
rule, it is clear that the interfacial concentration
for Class I-A and Class I-B problems and the
interfacial temperature for Class II problems
are constants set by external conditions. Hence,
application of the appropriate conservation
laws and jump conditions at the phase boundary
in conjunction with the above assumptions yields
the following dimensionless set of equations
for heat or mass transfer-controlled particle
dissolution [7]:

aY R? oY
o FEWa- N")( )(ar)
Y 20Y
@t O
Y(r,0) = r>1 (2)
Y(oo,)=0 t20 (3)
YR t)=1 >0 @)
dR Y
S-nE, e
R0O) = 1. (6)

The definitions of the variables and parameters
for these equations are given for all three classes
of dissolution problems in Table 1. The re-
mainder of this paper is concerned with solution
of this set of equations, both by finite-difference
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Table 1. Def nitions of variables and parameters

Vanable or

parameter Class I-A Class §-B Class 1
Y i~ Pro -t T'-T
Pre ~ Pro Pre — Po TF - Tn
t Dt* Dt* at®
R Ry R
r* ¥ 7™
r s - ——
RO Rg RO
R* * *
R — R R*
R, R, Rg
N -~ Pio plore — pro) PTg — T.g)CE
’ A —Vipre) plo — prp) PAH
N, pie=pro pre=pro (Tp = ToCe
it ? - PIE P — P AH

methods and by approximate analytical tech-
niques.

FINITE-DIFFERENCE METHOD AND RESULTS

Equations {1)}-{6) present two comphlications
which must be considered in any finite-difference
solution of the dissolution process, the move-
ment of the boundary between the two phases
and the infinite extent of the bulk phase. Associ-
ated with this second complication is the fact that
the gradients of concentration or temperature
become very large near the moving boundary
and, for an accurate finite-difference repre-
sentation of the differential equations, closely
spaced grid points are required in this region.
On the other hand, a coarse grid is adequate
for the major portion of the bulk phase. It has
been suggested [7] that the inaccuracies of
previous numerical studies of this problem
[10, 11] are due to inadequate finite-difference
approximations for the concentration or tem-
perature gradients near the surface of the
spherical particle. This previous investigation
demonstrated that accurate numerical solutions

can be obtained if a coordinate transformation is
used to immobilize the moving boundary and
map the infinite region into a region of finite
extent. One appropriate transformation for the
dissolution problem is

y=1—exp[-Bir—R] (N

and introduction of this new independent
variable converts equations {1}-{5) to the follow-
ing forms:

W .
1oy R(“ﬁ;)

i—war { I
R———— ¥
]
dROY oY ayY
“aa MV
2 oY
g B ) ®
B
d oY
-m(5),., ®
Y(.0) = (10)
Y{l,t) = (1
Y(0,6) = 1. {12)

In terms of the new variable, ¥, the transport
which controls the dissolution process occurs
in a fixed finite region The parameter f§ is
a constant which permits some flexibility in
the coordinate transformation and is used in
distributing grid points for the most accurate
representation of the differential equations. If
a central difference form for derivatives with
respect to i and a backward form for derivatives
with respect to time are employed, equations
(8) and (9) and the associated boundary condi-
tions can be solved by an implicit finite-difference
scheme which utilizes a Gaussian elimination
method to solve a tridiagonal matrix system. The
implicit finite-difference technique for the solu-
tion of parabolic partial differential equations
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which is used in this analysis is well known [12]
and the details are not included in this paper.
The mesh sizes for the radial and time variables
were varied in order to establish the convergence
of the finite-difference solution to the solution
of the differential equations. To obtain accurate

Table 2. Calculated dissolving particle

lifetimes
N, ty T
N,=10"°%
10°8 500 x 107 1-:00
1077 5.00 x 10° 100
1075 500 x 10° 1-00
10°% 499 x 10* 0998
10-4 495 x 10° 0-990
10?2 484 x 102 0968
1072 451 x 10 0902
N, =10"3
10°° 500 x 10° 1-00
10-3 499 x 10* 0998
1074 495 x 103 0990
1073 484 x 102 0968
1072 452 x 10? 0936
107! 400 0-800
1 284 x 1071 0568
N,=10"2
103 501 x 10* 0997
10-4 497 x 102 0989
10-3 486 x 102 0967
1072 465 x 10° 0925
107! 402 0-800
1 285 x 1071 0-567
10! 161 x 10~2 0320
N,=10""!
107% 521 x 103 0993
1073 511 x 10% 0974
1072 486 x 10° 0926
107! 422 0804
1 302 x 107! 0576
10! 171 x 1072 0326
10? 876 x 1074 0167
Ny=1
1073 690 x 10? 0956
1072 675 x 10 0936
107! 601 0833
1 451-x 107} 0625
10! 271 x 1072 0376
10? 143 x 1073 0-198
10° 726 x 107° 0101
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solutions with a reasonable number of time
steps, it was found expedient to start with very
small time steps and increase the size of these
steps as the particle dissolution process pro-
ceeds. In many cases, particularly at small
values of N,, the rate of dissolution increases
near the end of the process and it was necessary
to decrease the size of the time steps in this
region. The absolute size of the time steps
was dictated by the parameters N, and N, and,
for most cases, approximately 600 steps in time
were necessary for an accurate description of
the complete dissolution process. In the
direction, 160 evenly spaced points were found
to be adequate. For the optimum use of these
grid points, the range of § was varied from
05 for slowly dissolving particles to a value
of 20 for the cases where the rate of movement
of the free surface is fast compared to the
growth of the boundary layer.

The range of conditions covered in this study
and the calculated dimensionless particle life-
times are presented in Table 2. The quantity ©
is a convenient correlating variable for life-
times suggested by one of the analytical solutions
described below. The majority of dissolution
problems which are of practical importance fall
within the range of conditions considered in
this study. A graphical representation of the
lifetime results is presented in Fig. 1. Maximum
computer time on a Burroughs B5500 computer
was 500 s. In many applications, the radius of
the particle as a function of time is of interest
as well as the particle lifetime, and Figs. 2-6
show the rates of dissolution for the cases
considered in this study. Each of these figures
corresponds to a specific value of Ny, and it is
evident that, as N, is increased, a larger fraction
of the dissolution process occurs during a given
fraction of the lifetime of the sphere.

A comparison of the finite-difference solu-
tions of this study and results calculated from
an asymptotic perturbation solution discussed
below is presented in Fig 7. This graph shows
that the particle lifetimes calculated from the
perturbation solution differ by 2 per cent or
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FiG. 5. Radius-time curves for N, = 107!

F1G. 6. Radius—time curves for Ny, = 1.
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less from those calculated from the finite-
difference solution when N, £ 001 and N, <
001. Good agreement is also found for the
radius—time curves. Thus, for cases where N,
and N, are less than 001, the results presented
above were obtained from the perturbation
solution.
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completely described by the dissolution model
utilized here.

ANALYTICAL SOLUTIONS
As indicated above, analytical solutions to the
particle dissolution problem have been obtained
either by using asymptotic methods or by

-0
08
/\ Perturbation
/ solution
\\-—- /
06~
T Finite-difference
solution
0.4 —
o2k
0 ] | l
1073 1072 10-! i0* 10!
Ne

Fic. 7. Comparison of lifetimes calculated from finite-
difference and perturbation solutions for N, = 0-01.

The radius—time curves and particle lifetime
calculations presented here should provide
accurate descriptions of the numerous physical
situations which are adequately described by
the basic set of equations presented above. In
other important cases, some of the assumptions
utilized above in deriving the dissolution equa-
tions are not valid (For example, the physical
properties may be concentration or temperature
dependent.), and the solutions of this paper can
be regarded only as approximations to the true
behavior. However, in many of these cases,
the dominant mechanism of the dissolution
process is described by the present calculations,
and the results should be valuable for approxi-
mating physical phenomena which are not

applying weighted residual techniques. Asymp-
totic methods yield solutions which are ap-
proximately valid when a parameter or variable
of the problem is either very small or very
large. Perturbation procedures are a typical
and commonly used class of asymptotic methods.
Such solutions, of course, by themselves des-
cribe only a part of the physically important
range of dissolution processes. Weighted residual
methods lead to approximate solutions which
are obtained by demanding that the difference
between these solutions and the exact solutions
be minimized in some sense. Usually, weighted
integrals of the residual are made to vanish,
and the simpler weighted residual schemes are
sometimes called integral methods [13]. These
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methods have been applied with success in
obtaining accurate solutions to a variety of
nonlinear conduction and diffusion problems
[13], and a well formulated weighted residual
solution can often provide accurate results for
wide ranges of the variables and parameters of
the problem. Preliminary work [9] has indicated
the possibility that the integral method can
satisfactorily describe the particle dissolution
process. To our knowledge, however, no pub-
lished comprehensive weighted residual results
are available at thé present time.

Basically, two types of asymptotic analytical
solutions have been derived for description of
particle dissolution phenomena, quasi-stationary
solutions and quasi-steady-state solutions. The
so-called quasi-stationary solutions have been
obtained by neglecting the convective transport
term of the unsteady-state diffusion or energy
equation and then solving this equation with
the particle surface considered stationary. The
motion of the surface of the particle can then
be determined by utilizing the heat or mass
flux at the phase boundary as determined from
the solution of the simplified transport equation.
The quasi-stationary solution is apparently
applicable to situations where convective trans-
port is small compared to diffusive flow and
where the rate of growth of the thickness of
the concentration or temperature boundary
layer surrounding a particle is fast compared
to the rate of movement of the phase boundary.
The quasi-stationary solution can thus be
regarded as the asymptotic result for small
N,and N,

Epstein and Plesset [5] and Krieger et al [6]
both obtained quasi-stationary solutions essen-
tially by the method described above. A more
satisfactory approach is presented in a recent
investigation [7] where a parameter perturba-
tion solution of the dissolution process is
derived by taking advantage of the smallness
of N, and N, The quasi-stationary solution is
thus embedded as a first step in an orderly
scheme of successive approximations. The first-
order terms derived in the perturbation analysis
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extend the accuracy and range of validity
provided by the zero-order or quasi-stationary
solution and, in addition, furnish valuable
insight about the structure of the solution.
Furthermore, the zero-order perturbation
solution, although computationally equivalent
to available quasi-stationary results, is much
simpler in form, apparently because incomplete
higher-order terms have not been disregarded
in previous investigations.

The radius-time relationship derived from
the perturbation solution can be expressed as

R2:1—2N‘,(t+2\/£)
7[/

81 8¢t
+ N2 [51;; + 2t + e 211(1)]

+ NN, [t + 21,(t)]

where there is no N} term and where

(13)

i

e — v
() = j' J' erfc [/2(t — A)%]
00

(1 + n)? Jmd)

[exp (— n?/42)
J(#d)

Details of the perturbation solution, an expres-
sion for the concentration or temperature
distribution around a particle, and graphs
depicting the functional dependence of I,(t)
are given elsewhere [7] The zero-order per-
turbation result, which can be regarded as a
modification of previous quasi-stationary solu-
tions, is simply

R2=1-2Na(t+2\/~[->
T

It should be noted that, for given values of the
two perturbation parameters, more terms will
be needed to determine the particle radius with
equivalent accuracy from the series solution at
the longer values of time since a slower con-
vergence rate can be expected towards the end
of the interval of convergence, which can be

erfe (1/2,/A)
{(t+n

]dr; did. (14}

(15)
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inferred to be 0 < R < 2. Hence, it is possible
that the truncated perturbation series expan-
sion for the radius, equation (13), will lead to
significant errors near the end of the dissolution
process even though the remainder of the
radius-time curve is predicted quite accurately.

It was shown above that the perturbation
solution predicts the particle lifetime with less
than 2 per cent error for N, and N, both equal
to or less than 0-01, and accurate radius-time
curves can also be calculated from the analytical
solution for this range of perturbation para-
meters. Furthermore, from previous results [7],
it follows that the major part of the radius-time
curve can be calculated very accurately for
values of N, and N, of 02 Therefore, the
asymptotic analytical solution will yield reason-
ably accurate results for values of the perturba-
tion parameters significantly greater than 001,
although its use for larger values of N, and N,
cannot be recommended without some reserva-
tion.

The quasi-steady-state solution to the dis-
solution problem is discussed by Bankoff [4]
and by Kirkaldy [2], and the more general
so-called extended quasi-steady-state solution
is utilized by Rosner [14] and by Spalding [8].
These solutions appear to describe spherical
dissolution phenomena under conditions where
the interface velocity is small so that the tem-
perature or concentration field eventually
reaches what is effectively a steady-state dis-
tribution. Thus, a quasi-steady-state result can
be regarded as the asymptotic solution for small
N, and large ¢ Unfortunately, there appears to
be no detailed investigation available of the
asymptotic nature of the quasi-steady-state
solution, which basically should be derivable
from a perturbation analysis similar to the one
utilized to elucidate the basic structure of the
quasi-stationary result. Indeed, a perturbation
solution might be implemented by combining
a parameter perturbation technique of the type
utilized above with an inverse coordinate
perturbation scheme. However, since the system
would presumably have to be perturbed around
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a steady-state solution at infinite time, a
perturbation approach of this type may well be
susceptible to the problems inherent to forming
an asymptotic expansion which runs opposite
to the natural direction of time [15] Hence,
we shall here merely present the basic form of
the quasi-steady-state solution and consider
the possible range of validity by comparing
it with the finite-difference results.

The extended quasi-steady-state result is
the solution of
d’y 2dY R3N,/ey\ dY
et T(E),=R$= 0 19
subject to equations (3) and (4) with R? and
(0Y/or),_x regarded as constants. The solution
can be expressed as

1 —e¥r
Y = TR an
with
W = R2N, (%)—,) (18)
r r=R

Thus, from equations (5), (6), (17) and (18), it
follows that

_2NgIn(1 + N)
N,

and the particle lifetime can be expressed as

R =1 19

N,

=N, n(l ¥ Ny (20)
A less general but more widely used quasi-
steady-state solution is the result which is valid
for small values of N, as well as small values of
N, and large values of ¢t The equations cor-
responding to equations (19) and (20) for this
case are simply

R*=1-2Ng (1)

1
tL=2N.

(22)
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In Table 3, the first-order perturbation solu-
tion, the zero-order or quasi-stationary solution,
and the extended quasi-steady-state solution
are compared with the finite-difference calcula-
tion for N, = N, = 0:01. As would be expected,

Table 3. Evaluation of analytical solutions for N, = N, = 0-01

R2
! Finite-  Equation Equation  Equation
difference (13) (15) 119

0t 09910 0:9909 0:9509 09980
10 09581 09580 09574 09801
50 08531 08530 08495 09005
100 07370 07368 07286 0-8010
150 06269 06264 06126 077015
200 05203 05192 04991 0:6020
250 04164 04142 03872 05025
300 03149 0-3109 02764 04030
350 02156 0-2090 01665 0-3035
400 01188 0-1082 0-0573 0-2040
0-0085 —0-0514 0-1045

00257

the two-term perturbation result is clearly
superior. The quasi-stationary solution becomes
significantly inaccurate near the end of the
dissolution process and the extended
quasi-steady-state result systematically and sub-
stantially underestimates the rate of particle
dissolution. A similar conclusion about the
extended quasi-steady-state solution can be
drawn from Table 4 where it is compared to a
finite-difference solution for N, = 001 and
N, = 1. Hence, results calculated from equation
(19) are significantly in error even for values of
N, as low as 0-01. The possible ranges of N, and
N, where equation (19) might be expected to
yield good results can be obtained from Fig. 1.
The extended quasi-steady-state result predicts
t = 1; from Fig 1 it is possible to determine,
for each N, how accurately this solution
predicts the particle lifetime for various values
of N,

Since the form of the perturbation solution
is relatively simple, there appears to be no
compelling reason to utilize the more approxi-
mate quasi-steady-state result for cases when
both N, and N, are small. The extended solution
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given by equation (19) does yield results for all
values of N, and small N, a region not covered
by the perturbation solution. However, such
calculations should be treated with some caution
since the asymptotic nature of the quasi-steady-
state result is not clearly understood.

Table 4. Comparison of finite-difference
and extended quasi-steady-state solutions
for N, = 001 and N, = |

l ————— e
Finite-difference Equation (19)

01 09941 09986

10 09718 09861

50 0-8988 09307
100 08173 08614
i50 07395 07921
200 06637 07227
250 0-5895 (6534
300 05164 0-5841
350 0-4444 05148
400 03731 04455
450 03028 0-3762
500 02332 (03069
600 0-0967 01682
650 00305 00989

675 0

A third asymptotic solution utilized with
success in the treatment of bubble growth
phenomena [16] is the thin boundary-layer
solution. This solution applies to physical
situations where the velocity of the particle
surface is large compared to the rate of growth
of the thickness of the concentration or tem-
perature boundary layer; it can thus be regarded
as the asymptotic perturbation result for large
N, Although thin boundary-layer solutions
have proved very valuable in the analysis of
spherical growth phenomena, it is clear that
such results would be of limited utility in the
analysis of dissolution processes.
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DISSOLUTION CONTROLEE PAR UN TRANSFERT DE MASSE ET DE CHALEUR POUR
UNE SPHERE ISOLEE

Résumé—On présente un ensemble de solutions aux différences finies décrivant la dissolution contrdlée
par le transfert de chaleur et de masse d’ine sphére isolée. L’analyse est basée sur une formulation généralisée
qui inclut trois classes spécifiques de probléme de dissolution. Une transformation qui immobilise la
frontiére mouvante et transforme la région infinie intéressante en région finie est utilisée afin de minimiser
les difficultés associées & une analyse numérique de ce probléme.

Les résultats relatifs a la variation du rayon en fonction du temps et au temps de vie de la particule sont
établis pour un ensemble de paramétres qui inclut la majorité des processus de dissolution physiquement
importants. De plus, les résultats de cette recherche sont utilisés pour déterminer la précision et le domaine

d’application des diverses solutions analytiques approchées.

WARME- UND STOFFUBERGANGSABHANGIGE AUFLOSUNG EINER EINZELNEN

KUGEL

Zusammenfassung—FEs wird ein umfassender Satz von Losungen endlicher Differenzengleichungen
angegeben, der das durch Wirme- oder Stoffiibertragung bestimmte Schmelzen einer einzelnen Kugel
beschreibt. Die Analyse beruht auf einer verallgemeinerten Losung, die 3 besondere Arten von Schmelz-
problemen einschliesst. Fine Koordinatentransformation, welche die frei beweglichen Grenzen festlegt
und den interessierenden, unendlichen Bereich in einen endlichen abbildet, wird angewandt, um die
Schwierigkeiten mdglichst gering zu halten, die mit der numerischen Losung des Problems zusammen-
hiingen. Fiir Parameterbereiche, welch die meisten physikalisch bedeutsamen Schmelzprozesse einschliessen,
werden als Ergebnisse die Abhiingigkeit der Radien von der Zeit und die Lebensdauer der Kugeln angegeben.
Zusitzlich werden die Ergebnisse dieser Untersuchung dazu benutzt, die Genauvigkeit und den Anwen-
dungsbereich verschiedener analytischer Niherungslosungen zu bestimmen.

PACTBOPEHUE H30JUPOBAHHON C®EPLI [IPU YIIPABJIAEMOM
TENJOWJIN MACCOIEPEHOCE

AnporanMa—ONKCEBACTCA B JOCTYNHOM BUJe DPAJ pelleHMl B KOHEYHBIX PasHOCTAX
ypaBHeHMli JIA CiaydYad DacTBOPEHMA W30JMPOBAHHBLIX cfep NPH YIPABIAEMOM Temo-
nimm Maccomepenoce. Jlaércsa aHanus Ha OCHOBe y4éTa TPEX TUIIOB 3aa¥ IO PACTBOPEHHIO.
B nexax ynpoieHus 3aaun BBOAUTCA NPeoGpasoBanne KOOPAUHAT, B KOTOPHX UTHOPUPYeTCA
ABHHEHME TDAHMIH, M OeCkoHEYHAA 00macTb oToOpaskaeTcA B KOHeuHyw. [as obmacreit
HapaMeTpOB, KOTOPHE XapaKTePUSYIOT GObUIMHCTEO (PM3MIeCKH BAKHHX NPOLECCOB PACTBO-
PeHus, NPUBOJATCA 3HAYEHMA XAPAKTEPHCTHYECKOTO BDEMEHN M BPEMEHH MKU3HM 4JacTil,
Kpome Toro, pesymbTaTH TOr0 MCCIAOBAHUA UCIOAL3YIOTCA A ONPENeNeHHS TOUHOCTH M
TpaHull MPHMEHAMOCTH PA3TUIHLX NPUOIMKEHHHX AHAIUTHYECKUX pPelleHui.



